Łukasiewicz–Moisil algebra - définition. Qu'est-ce que Łukasiewicz–Moisil algebra
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Łukasiewicz–Moisil algebra - définition


Łukasiewicz–Moisil algebra         
Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebrasAndrei Popescu, Łukasiewicz-Moisil Relation Algebras, Studia Logica, Vol. 81, No.
Łukasiewicz logic         
MANY-VALUED LOGIC
Lukasiewicz fuzzy logic; Lukasiewicz logic; Łukasiewicz fuzzy logic; Łukasiewicz-Tarski logic; Łukasiewicz implication; Łukasiewicz–Tarski logic; Draft:Łukasiewicz logic
In mathematics and philosophy, Łukasiewicz logic ( , ) is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic;Łukasiewicz J.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.